Wskaż rysunek na którym przedstawiono przedział, będący zbiorem wszystkich rozwiązań nierówności \(-4\le x-1\le 4\).
Dane są liczby \(a=-\frac{1}{27}\), $b=\log{\frac{1}{4}}64$, $c=\log{\frac{1}{3}}27$. Iloczyn \(abc\) jest równy
Kwotę \(1000\) zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości \(4\%\) w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości \(19\%\). Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa
Równość \(\frac{m}{5-\sqrt{5}}=\frac{5+\sqrt{5}}{5}\) zachodzi dla
Układ równań \(\begin{cases} x-y=3 \\ 2x+0{,}5y=4 \end{cases} \) opisuje w układzie współrzędnych na płaszczyźnie
Suma wszystkich pierwiastków równania \((x+3)(x+7)(x-11)=0\) jest równa
Równanie \(\frac{x-1}{x+1}=x-1\)
Na rysunku przedstawiono wykres funkcji \(f\). Zbiorem wartości funkcji \(f\) jest
Na wykresie funkcji liniowej określonej wzorem \(f(x)=(m-1)x+3\) leży punkt \(S=(5,-2)\). Zatem
Funkcja liniowa \(f\) określona wzorem \(f(x)=2x+b\) ma takie samo miejsce zerowe, jakie ma funkcja \(g(x)=-3x+4\). Stąd wynika, że
Funkcja kwadratowa określona jest wzorem \(f(x)=x^2+x+c\). Jeśli \(f(3)=4\), to
Ile liczb całkowitych \(x\) spełnia nierówność \(\frac{2}{7}\lt \frac{x}{14}\lt \frac{4}{3}\)?
W rosnącym ciągu geometrycznym \((a_n)\), określonym dla \(n\ge 1\), spełniony jest warunek \(a_4=3a_1\). Iloraz \(q\) tego ciągu jest równy
W układzie współrzędnych zaznaczono punkt \(P=(-4,5)\). Tangens kąta \(\alpha \) zaznaczonego na rysunku jest równy
Jeżeli \(0^\circ \lt \alpha \lt 90^\circ \) oraz \(\operatorname{tg} \alpha =2\sin \alpha \), to
Miara kąta wpisanego w okrąg jest o \(20^\circ \) mniejsza od miary kąta środkowego opartego na tym samym łuku. Wynika stąd, że miara kąta wpisanego jest równa
Pole rombu o obwodzie \(8\) jest równe \(1\). Kąt ostry tego rombu ma miarę \(\alpha \). Wtedy
Prosta \(l\) o równaniu \(y=m^2x+3\) jest równoległa do prostej \(k\) o równaniu \(y=(4m-4)x-3\). Zatem:
Proste o równaniach: \(y=2mx-m^2-1\) oraz \(y=4m^2x+m^2+1\) są prostopadłe dla
Dane są punkty \(M=(-2,1)\) i \(N=(-1,3)\). Punkt \(K\) jest środkiem odcinka \(MN\). Obrazem punktu \(K\) w symetrii względem początku układu współrzędnych jest punkt
W graniastosłupie prawidłowym czworokątnym \(EFGHIJKL\) wierzchołki \(E, G, L\) połączono odcinkami (tak jak na rysunku). Wskaż kąt między wysokością \(OL\) trójkąta \(EGL\) i płaszczyzną podstawy tego graniastosłupa.
Przekrojem osiowym stożka jest trójkąt równoboczny o boku długości \(6\). Objętość tego stożka jest równa
Każda krawędź graniastosłupa prawidłowego trójkątnego ma długość równą \(8\). Pole powierzchni całkowitej tego graniastosłupa jest równe
Średnia arytmetyczna zestawu danych: \(2,4,7,8,9\) jest taka sama jak średnia arytmetyczna zestawu danych: \(2,4,7,8,9,x.\) Wynika stąd, że
W każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga - niebieska. Z każdego pojemnika losujemy jedną kulę. Niech \(p\) oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy
Rozwiąż nierówność \(2x^2-4x\gt (x+3)(x-2)\).
Wykaż, że dla każdej liczby rzeczywistej \(x\) i dla każdej liczby rzeczywistej \(y\) prawdziwa jest nierówność \(4x^2-8xy+5y^2\ge 0\).
Dany jest kwadrat \(ABCD\). Przekątne \(AC\) i \(BD\) przecinają się w punkcie \(E\). Punkty \(K\) i \(M\) są środkami odcinków - odpowiednio \(AE\) i \(EC\). Punkty \(L\) i \(N\) leżą na przekątnej \(BD\) tak, że \(|BL|=\frac{1}{3}|BE|\) i \(|DN|=\frac{1}{3}|DE|\) (zobacz rysunek). Wykaż, że stosunek pola czworokąta \(KLMN\) do pola kwadratu \(ABCD\) jest równy \(1:3\).
Oblicz najmniejszą i największą wartość funkcji kwadratowej \(f(x)=x^2-6x+3\) w przedziale \(\langle 0,4\rangle \).
W układzie współrzędnych dane są punkty \(A=(-43,-12)\), \(B=(50,19)\). Prosta \(AB\) przecina oś \(Ox\) w punkcie \(P\). Oblicz pierwszą współrzędną punktu \(P\).
Jeżeli do licznika i do mianownik nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy \(\frac{4}{7}\), a jeżeli do licznika i do mianownika dodamy \(1\), to otrzymamy \(\frac{1}{2}\). Wyznacz ten ułamek.
Wysokość graniastosłupa prawidłowego czworokątnego jest równa \(16\). Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem, którego cosinus jest równy \(\frac{3}{5}\). Oblicz pole powierzchni całkowitej tego graniastosłupa.
Wśród \(115\) osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.
Rodzaj kupionych biletów | Liczba osób |
ulgowe | 76 |
normalne | 41 |
W nieskończonym ciągu arytmetycznym \((a_n)\), określonym dla \(n\ge 1\), suma jedenastu początkowych wyrazów tego ciągu jest równa \(187\). Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa 12. Wyrazy \(a_1, a_3, a_k\) ciągu \((a_n)\), w podanej kolejności, tworzą nowy ciąg - trzywyrazowy ciąg geometryczny \((b_n)\). Oblicz \(k\).